Economics 113 Professor Spearot Winter 2013 – Midterm 3

ID _____

Midterm 3 –60 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but they must not be graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature

Problem 1

The decision to attend college is a very important one, and family characteristics are considered a major factor in educational attainment. To begin our study of educational attainment, we evaluate the impact of the number of siblings, *sibs*, and the order of birth, *brthord* (1 for first, 2 for second...), on the years of education attained, *educ*.

log(educ) =	$\beta_0 +$	$\beta_1 brthord +$	$\beta_2 sibs + u$
-------------	-------------	---------------------	--------------------

Source	SS	df	MS	N	umber of obs	= 659
Model Residual Total	.702496954 16.2065079 16.9090048	2 .351 656 .024 658 .025	248477 705042 697576	E E F F	r(2, 656) rob > F -squared dj R-squared cot MSE	= 14.22 = 0.0000 = 0.0415 = 0.0386 = .15718
logeduc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
brthord sibs _cons	0096447 0101424 2.652929	.005067 .0034227 .0113445	XXXXXXXX XXXXXXXX XXXXXXXX	×××××××××××× ×××××××××××××××××××××××××	××××××××××××××××××××××××××××××××××××××	<pre></pre>

a.) Please interpret the coefficient on *sibs*. Using the 99% confidence level, please test whether it is significantly different from zero. (10 Points)

Name _____

b.) In part (a), I forget about parental education, which is probably quite important. Specifically, I include mother's education, *meduc*, and father's education, *feduc*, as follows:

 $\log(educ) = \beta_0 + \beta_1 brthord + \beta_2 sibs + \beta_3 \log(meduc) + \beta_4 log(feduc) + u$

The results from estimating this equation are below:

Source	SS	df		MS			Number	of obs	=	659
+							F(4,	654)	=	36.58
Model	3.09146926	4	.77	728673	14		Prob >	F	=	0.0000
Residual	13.8175355	654	.0)21127	73		R-squar	ed	=	0.1828
+							Adj R-s	quared	=	0.1778
Total	16.9090048	658	.02	256975	76		Root MS	Ε	=	.14535
logeduc	Coef.	std.	Err.			P> t	 ۱95۶	Conf.	Tr	tervall
+										
brthord	0009342	.0047	804	XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XXX	XXXXXXX
sibs	0061294	.0031	935	XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XXX	XXXXXXX
logmeduc	.0752445	.0214	354	XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XXX	XXXXXXX
logfeduc	.1299058	.017	919	XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XXX	XXXXXXX
cons	2.150804	.0520	578	XXXXX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XXX	XXXXXXX

Is this model preferred to the model in 'a'? Please test this at the 95% level, stating your null and alternative hypotheses. Show your work!!! (10 Points)

c.) Using the regression in 'b', suppose I claim that birth order has a significant effect on education levels. What is the probability that I'm wrong? (10 Points)

d.) Please construct a 90% confidence interval for the coefficient on mother's education. Please interpret this confidence interval. (10 Points)

e.) Please **derive** an equation that allows me to test whether the effect of mother's education is the same as father's education. Along with the derivation, please state the null and alternative hypothesis, and write down any Stata commands required to generate new variables and run the regression. (10 Points)

Problem 2

Using the same dataset as before, I estimate the following equation predicting wage outcomes:

$$wage = \beta_0 + \beta_1(educ - 16) + \beta_2(meduc - 12) + \beta_3(feduc - 12) + u$$

where *wage* is the monthly wage of the respondent. The results from estimating this equation are below:

Source	SS	df	MS		Number of ob)s =	722
	+				F(3, 718	3) =	32.61
Model	14399607.2	3	4799869.07		Prob > F	=	0.0000
Residual	105675187	718	147179.926		R-squared	=	0.1199
	+				Adj R-square	ed =	0.1162
Total	120074794	721	166539.243		Root MSE	=	383.64
wage	Coef.	Std. E	Err. t	P> t	[95% Conf	Ξ. Ir	nterval]
wage	Coef.	Std. E	Err. t	P> t	[95% Conf	Ē. Ir	nterval]
wage educ-16	Coef. +	Std. E 7.1685	Err. t 573 XXXXXX	P> t XXXXXXXXX	95% Conf 	E. Ir	nterval]
wage educ-16 meduc-12	Coef. +	Std. E 7.1685 6.2728	Err. t 573 XXXXXX 366 XXXXXX	P> t XXXXXXXXX XXXXXXXXX	[95% Conf xxxxxxxxxxxxxxx xxxxxxxxxxxxxx	E. Ir 	nterval] XXXXXXXXX XXXXXXXX
wage educ-16 meduc-12 feduc-12	Coef. +	Std. E 7.1685 6.2728 5.5106	Err. t 573 xxxxxx 366 xxxxxx 591 xxxxxx	P> t xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxx	95% Conf xxxxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx	E. In XXXXX XXXXX XXXXX	nterval] xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx
wage educ-16 meduc-12 feduc-12 cons	Coef. +	Std. E 7.1685 6.2728 5.5106 20.695	Err. t 573 XXXXXX 366 XXXXXX 591 XXXXXX 534 XXXXXX	P> t xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxx	[95% Conf xxxxxxxxxxxxxx xxxxxxxxxxxxx xxxxxxxx	E. In XXXX XXXX XXXX XXXX XXXX	nterval] xxxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxx

Please construct a 92% confidence interval for the constant. Please interpret this confidence interval. Show your work!!! (10 Points)

1.8
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706

1.9
0.9713
0.9719
0.9726
0.9732
0.9738
0.9744
0.9750
0.9756
0.9761
0.9767

2.0
0.9772
0.9778
0.9783
0.9788
0.9793
0.9798
0.9803
0.9808
0.9812
0.9817

2.1
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850
0.9854
0.9857

2.2
0.9861
0.9864
0.9868
0.9871
0.9875
0.9878
0.9881
0.9884
0.9887
0.9890

2.3
0.9861
0.9864
0.9868
0.9901
0.9906
0.9909
0.9911
0.9913
0.9916

2.4
0.9918
0.9920
0.9922
0.9925
0.9929
0.9931
0.9932
0.9934
0.9936

2.5
0.9938
0.9940
0.9941
0.9943
0.9945
0.9946
0.9949
0.9951
0.9952

2.6
<t